• Call for Social Sciences Papers
  • Science Sessions: The PNAS Podcast Program

Evolutionary dynamics of language systems

  1. Russell D. Grayb,h
  1. aARC Centre of Excellence for the Dynamics of Language, Australian National University, Canberra, ACT 0200, Australia;
  2. bDepartment of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745 Jena, Germany;
  3. cDepartment of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom;
  4. dMacroevolution and Macroecology, Division of Ecology, Evolution, and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200 Australia;
  5. eDepartment of Linguistics and Philology, Uppsala University, 75238 Uppsala, Sweden;
  6. fMax Planck Institute for Psycholinguistics, 6525 XD, Nijmegen, The Netherlands;
  7. gComparative Linguistics, Radboud University Nijmegen, 6525 HP, Nijmegen, The Netherlands;
  8. hSchool of Psychology, University of Auckland, Auckland, New Zealand
  1. Edited by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, and approved July 11, 2017 (received for review January 8, 2017)

  1. Fig. 2.

    Proportion of characters in each dataset falling into each of the three posterior rate categories.

  2. Fig. 3.

    Histograms of median δ-scores for each language calculated from the lexical and grammatical data. Larger scores indicate more reticulation. (Inset) NeighborNet network visualizations of the conflicting signal in these data, where edge lengths are proportional to support in the data and larger boxes indicate more conflicting signal.

  3. Fig. S1.

    Histograms comparing the estimated distribution of lexical rates in our analysis with the results of Pagel et al. (28, 58).

  4. Fig. S2.

    Histogram showing the distribution of cognate/feature set sizes (i.e., how many languages share the same state in each variable) for the grammatical and lexical data.

  5. Fig. S3.

    Summary tree (maximum clade credibility) of the posterior probability tree distribution under the best-fitting model. Values on the nodes denote posterior probability support values for each language subgroup.

Online Impact

                                    1. 613261309 2018-02-21
                                    2. 6972481308 2018-02-21
                                    3. 2758991307 2018-02-21
                                    4. 5213301306 2018-02-21
                                    5. 6402651305 2018-02-21
                                    6. 975701304 2018-02-20
                                    7. 619701303 2018-02-20
                                    8. 6291841302 2018-02-20
                                    9. 8182271301 2018-02-20
                                    10. 7717531300 2018-02-20
                                    11. 2811781299 2018-02-20
                                    12. 9132041298 2018-02-20
                                    13. 285331297 2018-02-20
                                    14. 2838721296 2018-02-20
                                    15. 274321295 2018-02-20
                                    16. 2027431294 2018-02-20
                                    17. 2738641293 2018-02-20
                                    18. 9584601292 2018-02-20
                                    19. 9002021291 2018-02-20
                                    20. 7995901290 2018-02-20