• Call for Physical Sciences Papers
  • Science Sessions: The PNAS Podcast Program

Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds

  1. Victoria J. Orphana,1
  1. aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
  2. bGeomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi 783-8502, Japan;
  3. cGeobiotechnology Group, Research and Development Center for Submarine Resources, JAMSTEC, Monobe B200, Nankoku, Kochi 783-8502, Japan;
  4. dResearch and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama, Kanagawa 236-0001, Japan
  1. Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved September 6, 2017 (received for review May 5, 2017)

Significance

Microbial cells are widespread in diverse deep subseafloor environments; however, the viability, growth, and ecophysiology of these low-abundance organisms are poorly understood. Using single-cell–targeted stable isotope probing incubations combined with nanometer-scale secondary ion mass spectrometry, we measured the metabolic activity and generation times of thermally adapted microorganisms within Miocene-aged coal and shale bed samples collected from 2 km below the seafloor during Integrated Ocean Drilling Program Expedition 337. Microorganisms from the shale and coal were capable of metabolizing methylated substrates, including methylamine and methanol, when incubated at their in situ temperature of 45 °C, but had exceedingly slow growth, with biomass generation times ranging from less than a year to hundreds of years as measured by the passive tracer deuterated water.

Abstract

The past decade of scientific ocean drilling has revealed seemingly ubiquitous, slow-growing microbial life within a range of deep biosphere habitats. Integrated Ocean Drilling Program Expedition 337 expanded these studies by successfully coring Miocene-aged coal beds 2 km below the seafloor hypothesized to be “hot spots” for microbial life. To characterize the activity of coal-associated microorganisms from this site, a series of stable isotope probing (SIP) experiments were conducted using intact pieces of coal and overlying shale incubated at in situ temperatures (45 °C). The 30-month SIP incubations were amended with deuterated water as a passive tracer for growth and different combinations of 13C- or 15N-labeled methanol, methylamine, and ammonium added at low (micromolar) concentrations to investigate methylotrophy in the deep subseafloor biosphere. Although the cell densities were low (50–2,000 cells per cubic centimeter), bulk geochemical measurements and single-cell–targeted nanometer-scale secondary ion mass spectrometry demonstrated active metabolism of methylated substrates by the thermally adapted microbial assemblage, with differing substrate utilization profiles between coal and shale incubations. The conversion of labeled methylamine and methanol was predominantly through heterotrophic processes, with only minor stimulation of methanogenesis. These findings were consistent with in situ and incubation 16S rRNA gene surveys. Microbial growth estimates in the incubations ranged from several months to over 100 y, representing some of the slowest direct measurements of environmental microbial biosynthesis rates. Collectively, these data highlight a small, but viable, deep coal bed biosphere characterized by extremely slow-growing heterotrophs that can utilize a diverse range of carbon and nitrogen substrates.

Footnotes

  • ?1To whom correspondence may be addressed. Email: eliztr{at}gmail.com or vorphan{at}gps.caltech.edu.

This is an open access article distributed under the PNAS license.

Online Impact

    <acronym id="UPyyYwe"></acronym>
    <tr id="UPyyYwe"><optgroup id="UPyyYwe"></optgroup></tr>
    <acronym id="UPyyYwe"><optgroup id="UPyyYwe"></optgroup></acronym>
    <acronym id="UPyyYwe"><small id="UPyyYwe"></small></acronym>
    <acronym id="UPyyYwe"></acronym><acronym id="UPyyYwe"></acronym>
    <acronym id="UPyyYwe"></acronym>
    <acronym id="UPyyYwe"></acronym>
    <acronym id="UPyyYwe"></acronym>
  • 8311061341 2018-02-23
  • 2679231340 2018-02-23
  • 995901339 2018-02-23
  • 6664181338 2018-02-23
  • 4692171337 2018-02-23
  • 6117421336 2018-02-23
  • 5226191335 2018-02-23
  • 8398791334 2018-02-23
  • 8369321333 2018-02-23
  • 7728251332 2018-02-23
  • 979371331 2018-02-23
  • 4548201330 2018-02-23
  • 4992161329 2018-02-23
  • 6703541328 2018-02-23
  • 8686301327 2018-02-22
  • 1879481326 2018-02-22
  • 9332351325 2018-02-22
  • 7384141324 2018-02-22
  • 8918371323 2018-02-22
  • 7638311322 2018-02-22